
Search I

Tuomas Sandholm
Carnegie Mellon University

Computer Science Department

[Read Russell & Norvig Chapter 3]

Search I
Goal-based agent (problem solving agent)

Goal formulation (from preferences). Romania example, (Arad  Bucharest)

Problem formulation: deciding what actions & state to consider.
E.g. not “move leg 2 degrees right.”

No map vs. Map
physical deliberative
 search search

Search I
“Formulate, Search, Execute” (sometimes interleave search & execution)

For now we assume
 full observability = known state
 known effects of actions

Data type problem
 Initial state (perhaps an abstract characterization) ↔ partial observability (set)

Operators
Goal-test (maybe many goals)
Path-cost-function

Knowledge representation
 Mutilated chess board

Search I
Example problems demonstrated in terms of the problem definition.

I. 8-puzzle (general class is NP-complete)

How to model operators? (moving tiles vs. blank)
Path cost = 1

Search I
II. 8-queens (general class has efficient solution) path cost = 0

Incremental formulation:
(constructive search)
States: any arrangement of 0 to 8
queens on board
Ops: add a queen to any square
sequences = 648

Improved incremental formulation:
States: any arrangement of 0 to 8 queens
on board with none attacked
Ops: place a queen in the left-most empty
column s.t. it is not attacked by any other
queen
sequences = 2057

Complete State formulation:
(iterative improvement)
States: arrangement of 8 queens, 1
in each column
Ops: move any attacked queen to
another square in the same column

Almost a solution to the 8-queen problem:

Search I
III.  Rubik’ Cube ~ 1019 states

IV. Crypt arithmetic
 FORTY 29786
 + TEN + 850
 + TEN + 850
 SIXTY 31486

V.  Real world problems
 1. Routing (robots, vehicles, salesman)
 2. Scheduling & sequencing
 3. Layout (VLSI, Advertisement, Mobile phone link stations)
 4. Winner determination in combinatorial auctions
…

Data type node

•  State
•  Parent-node
•  Operator
•  Depth
•  Path-cost

Fringe = frontier = open (as queue)

Goodness of a search strategy

•  Completeness
•  Time complexity
•  Space complexity
•  Optimality of the solution found

(path cost = domain cost)
•  Total cost = domain cost + search cost

search cost

Uninformed vs. informed search

Can only distinguish goal states from non-goal state

Breadth-First Search
function BREADTH-FIRST-SEARCH (problem) returns a solution or failure
 return GENERAL-SEARCH (problem, ENQUEUE-AT-END)

Breadth-first search tree after 0,1,2 and 3 node expansions

Breadth-First Search …
Max 1 + b + b2 + … + bd nodes (d is the depth of the shallowest goal)
- Complete
- Exponential time & memory O(bd)
- Finds optimum if path-cost is a non-decreasing function of the
depth of the node.

Uniform-Cost Search
Insert nodes onto open list in ascending order of g(h).

Finds optimum if the cost of a path never decreases as we go along the path.
g(SUCCESSORS(n)) ≥ g(n)

<= Operator costs ≥ 0
If this does not hold, nothing but an exhaustive search will find the optimal solution.

G inserted into open list
although it is a goal state.
Otherwise cheapest path to a
goal may not be found.

Depth-First Search
function DEPTH-FIRST-SEARCH (problem) returns a solution or failure
 GENERAL-SEARCH (problem, ENQUEUE-AT-FRONT)

• Time O(bm) (m is the max
 depth in the space)

• Space O(bm) !
• Not complete (m may be ∞)

• E.g. grid search in one
direction

• Not optimal

Alternatively can
use a recursive
implementation.

Depth-Limited Search
-  Depth limit in the algorithm, or
-  Operators that incorporate a depth limit

L = depth limit
Complete if L ≥ d (d is the depth of the shallowest goal)
Not optimal (even if one continues the search after the
first solution has been found, because an optimal solution may
not be within the depth limit L)
O(bL) time
O(bL) space

Diameter of a search space?

Iterative Deepening Search

Breadth first search :
1 + b + b2 + … + bd-1 + bd

E.g. b=10, d=5: 1+10+100+1,000+10,000+100,000 = 111,111

Iterative deepening search :
(d+1)*1 + (d)*b + (d-1)*b2 + … + 2bd-1 + 1bd

E.g. 6+50+400+3000+20,000+100,000 = 123,456
Complete, Optimal, O(bd) time, O(bd) space
Preferred when search space is large & depth of (optimal) solution is unknown

Iterative Deepening Search…

Iterative Deepening Search…

If branching factor is large,
most of the work is done at
the deepest level of search,
so iterative deepening does
not cost much relatively speaking

Bi-Directional Search

Time O(bd/2)

Bi-Directional Search …
Need to have operators that calculate predecessors.
What if there are multiple goals?
•  If there is an explicit list of goal states, then we can apply a predecessor function
to the state set just as we apply the successors function in multiple-state forward
search.
•  If there is only a description of the goal set, it MAY be possible to figure out the
possible descriptions of “sets of states that would generate the goal set”.

Efficient way to check when searches meet: hash table
-  1-2 step issue if only one side stored in the table
Decide what kind of search (e.g. breadth-first) to use in each half.

Optimal, complete, O(bd/2) time. O(bd/2) space (even with iterative deepening)
because the nodes of at least one of the searches have to be stored to check matches

Time, Space, Optimal, Complete?

b = branching factor
d = depth of shallowest goal state
m = depth of the search space
l = depth limit of the algorithm

More effective
& more
computational
overhead

With loops, the search tree may even become infinite

Avoiding repeated states

