Search |

Tuomas Sandholm

Carnegie Mellon University
Computer Science Department

[Read Russell & Norvig Chapter 3]

Search 1

Goal-based agent (problem solving agent)

Goal formulation (from preferences). Romania example, (Arad = Bucharest)

Problem formulation: deciding what actions & state to consider.
E.g. not “move leg 2 degrees right.”

[] Oradea

»\ Neamt
D Zerind \ -
| r) lasi
i'Amd [j | 5
Nomap vs. Map ' [\ .
)] i e \ Sibiu Fagaras
physical deliberative | g |] vastu
SearCh SearCh ||:1T1m|.<;onm .\\DRimnicu ancea\
[Lugoj l}\) “?IICSU \
“ ‘I} /D"» 9 \
t] Mehadia II‘ .// T - o D Hirsova
.l Mehadie ;l AN "\ Urziceni
Dobreta E] \ / \ [Buchares))
h ' 7 D/ I a
Craiova) Eforie
Giurgiu

Figure 3.3 A simplified road map of Romania.

Search 1

“Formulate, Search, Execute” (sometimes interleave search & execution)

For now we assume
full observability = known state
known effects of actions

Data type problem
Initial state (perhaps an abstract characterization) <= partial observability (set)
Operators
Goal-test (maybe many goals)
Path-cost-function

Knowledge representation
Mutilated chess board

Search 1

Example problems demonstrated in terms of the problem definition.

I. 8-puzzle (general class 1s NP-complete)

oo & | lig3
| | 1 2 ||| 3|
& o b
i e B £ o
| Wellls]
7 1l 3 ||| 2 7|86]]l 5
Start State Goal State]
B A typical insl;mccﬁ«T(the 3-])[1//.]07 }

How to model operators? (moving tiles vs. blank)
Path cost =1

Search 1

II. 8-queens (general class has efficient solution) path cost=0

Incremental formulation: Complete State formulation:
(constructive search) (iterative improvement)

States: any arrangement of 0 to 8 States: arrangement of 8 queens, 1
queens on board in each column

Ops: add a queen to any square Ops: move any attacked queen to
sequences = 648 another square in the same column

Improved incremental formulation:
States: any arrangement of 0 to 8 queens
on board with none attacked

Ops: place a queen in the left-most empty
column s.t. it 1s not attacked by any other
queen

sequences = 2057

E o3

Almost a solution to the 8-queen problem:

Search 1

III. Rubik’ Cube ~ 10!° states

IV. Crypt arithmetic
FORTY 29786

+ TEN + 850
+ TEN + 850
SIXTY 31486

V. Real world problems
1. Routing (robots, vehicles, salesman)
2. Scheduling & sequencing
3. Layout (VLSI, Advertisement, Mobile phone link stations)
4. Winner determination in combinatorial auctions

Data type node

e State

e Parent-node
* Operator

* Depth
 Path-cost

Fringe = frontier = open (as queue)

(a) The initial state Arad

(b) After expanding Arad Arad
Sibiu Timisoara
(c) After expanding Sibiu Arad
Sibiu Timisoara
Arad Fagaras Oradea Rimnicu Vilcea

Zerind

Zerind

Partial search tree for route finding from Arad to Bucharest.

function GENERAL-SEARCH(problem, QUEUING-FN) returns a solution, or failure

nodes — MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem])))

loop do
if nodes is empty then return failure _,
node — REMOVE-FRONT(nodes) 4
if GOAL-TEST[problem| applied to STATE(node) succeeds then return node
nodes — QUEUING-FN(nodes, EXPAND(node. OPERATORS|problemy)) jl
end

——

—_— —_—
e — —

—

The general search algorithm. (Note that QUEUING-FN is a variable whose value
will be a function.)

Goodness of a search strategy

« Completeness
e Time CompleXity > search cost
* Space complexity

» Optimality of the solution found
(path cost = domain cost)

 Total cost = domain cost + search cost

Uninformed vs. informed search

Can only distinguish goal states from non-goal state

Breadth-First Search

function BREADTH-FIRST-SEARCH (problem) returns a solution or failure
return GENERAL-SEARCH (problem, ENQUEUE-AT-END)

T

Breadth-first search tree after 0,1,2 and 3 node expansions

Breadth-First Search ...

Max 1 +b +b?+ ... + bdnodes (d is the depth of the shallowest goal)
- Complete

- Exponential time & memory O(b%)

- Finds optimum 1f path-cost 1s a non-decreasing function of the

depth of the node.

Depth Nodes Time Memory
0 L I I millisecond 100 bytes
2 11 I seconds I'1 Kilobytes
4 1111 Il seconds I megabvte
6 10° I8 minutes LI1 megabytes
8 10 31 hours [l gigabvies
10 10" 128 days | terabyte
12 10! 35 years 11 terabytes
14 10" 3500 years TLTLD terabytes

Time and memory requirements for breadth-first search. The figures shown
assume branching factor b = 10; 1000 nodes/second: 100 bytes/node.

Unitorm-Cost Search

Insert nodes onto open list in ascending order of g(h).

G 1inserted into open list
although 1t is a goal state.
Otherwise cheapest path to a
goal may not be found.

S@®

0

S
B \C@ |
" 15
G
10
(a) (b)
A route-finding problem. (a) The state space, showing the cost for each operator.
(b) Progression of the search. Each node is labelled with g(n). At the next step, the goal node

with g = 10 will be selected.

Finds optimum if the cost of a path never decreases as we go along the path.
g(SUCCESSORS(n)) = g(n)

<= Operator costs = 0
If this does not hold, nothing but an exhaustive search will find the optimal solution.

Depth-First Search

function DEPTH-FIRST-SEARCH (problem) returns a solution or failure
GENERAL-SEARCH (problem, ENQUEUE-AT-FRONT)

© @ 7 O
Alternatively can
: @ o ®@ © G
USC a 1reCursive
implementation. e o ¢ o
® o
*Time O(b™) (m is the max | ® ® ® ®
depth in the space) | | | |
Space O(bm) ! @& e e e @ o e o
*Not complete (m may be ®) | / \ / \ / \
*E.g. grid search in one ‘ o o e o /,'\ 3 ¢ "
direction /- e |
Not optimal & & __® ¢ ___®
Depth-first search trees for a binary search tree. Nodes at depth 3 are assu i

Depth-Limited Search

- Depth limit 1n the algorithm, or
- Operators that incorporate a depth limait

L = depth limat
Complete 1f L = d (d is the depth of the shallowest goal)

Not optimal (even if one continues the search after the
first solution has been found, because an optimal solution may
not be within the depth limit L)

O(b") time
O(bL) space

Diameter of a search space?

[terative Deepening Search

—_

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution sequence
inputs: problem, a problem

for depth — 0 to co do

if DEPTH-LIMITED-SEARCH(problem, depth) succeeds then return its result
end |

return failure

Breadth first search :
l+b+b2+ ... +bd! +bd

E.g. b=10, d=5: 1+10+100+1,000+10,000+100,000 = 111,111

Iterative deepening search :

(d+1)*1 + (d)*b + (d-1)*b? + ... + 2b%! + 1bd

E.g. 6+50+400+3000+20,000+100,000 = 123,456

Complete, Optimal, O(b%) time, O(bd) space

Preferred when search space 1s large & depth of (optimal) solution 1s unknown

[terative Deepening Search...

Limit=0 @

Limit=1 @

"R

Four iterations of iterative deepening search on a binary tree.

[terative Deepening Search...

|
4 |
e If branching factor is large,
1 } most of the work 1s done at
I the deepest level of search,
d { so iterative deepening does
£ el : not cost much relatively speaking
e
= 4l l
|
3l |
|
|
BE |
|
1 SEESEe CRERG - Tl A B SR N
0 1 1 1 1 1

I 1 1 1
1 . 3 4 5 6 7 8 9
Branching Factor B

Graph of branching factor vs. constant coefficient as search depth goes to infinity.

Bi1-Directional Search

QW WD
oS e

A schematic view of a bidirectional breadth-first search that is about to succeed,
when a branch from the start node meets a branch from the goal node.

Time O(b??)

Bi-Directional Search ...

Need to have operators that calculate predecessors.

What if there are multiple goals?

* [f there is an explicit list of goal states, then we can apply a predecessor function
to the state set just as we apply the successors function in multiple-state forward
search.

* [f there 1s only a description of the goal set, it MAY be possible to figure out the
possible descriptions of “sets of states that would generate the goal set”.

Efficient way to check when searches meet: hash table
- 1-2 step 1ssue 1f only one side stored in the table
Decide what kind of search (e.g. breadth-first) to use in each half.

Optimal, complete, O(b%?) time. O(b¥?) space (even with iterative deepening)
because the nodes of at least one of the searches have to be stored to check matches

Time, Space, Optimal, Complete?

Criterion Breadth- Uniform- Depth- Depth- [terative Bidirectional
First Cost First Limited Deepening (if applicable)
Time X X p B! X i
Space b! b? bm bl bd b
Optimal? Yes Yes No No Yes Yes
Complete? Yes Yes No Yes, ifl > d Yes Yes

Evaluation of search strategies. b is the branching factor; d is the depth of solution;
m is the maximum depth of the search tree; [is the depth limit.

b = branching factor

d = depth of shallowest goal state
m = depth of the search space

1 = depth limit of the algorithm

Avoiding repeated states

A

A statc'space that generates an exponentially larger search tree. The left-hand
side shows the state space, in which there are two possible actions leading from A to B, two from
B to C, and so on. The right-hand side shows the corresponding search tree.

¢ Do not return to the state you just came from. Have the expand function (or the operator
set) refuse to generate any successor that is the same state as the node’s parent.

More effective . . :
¢ Do not create paths with cycles in them. Have the expand function (or the operator set)

& more . .

computational refuse to generate any successor of a node that is the same as any of the node’s ancestors.

overhead ¢ Do not generate any state that was ever generated before. This requires every state that is
v

generated to be kept in memory, resulting in a space complexity of O(b%), potentially. It is
better to think of this as O(s), where s is the number of states in the entire state space.

To implement this last option, search algorithms often make use of a hash table that stores all
the nodes that are generated. This makes checking for repeated states reasonably efficient. The
trade-off between the cost of storing and checking and the cost of extra search depends on the
problem: the “loopier” the state space, the more likely it is that checking will pay off.

With loops, the search tree may even become infinite

