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Search I 
Goal-based agent (problem solving agent) 

Goal formulation (from preferences). Romania example, (Arad  Bucharest) 

Problem formulation: deciding what actions & state to consider. 
E.g. not “move leg 2 degrees right.” 

No map  vs.  Map 
physical            deliberative 
 search               search 
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“Formulate, Search, Execute”   (sometimes interleave search & execution) 

For now we assume  
 full observability = known state 
 known effects of actions 

Data type problem 
       Initial state (perhaps an abstract characterization) ↔ partial observability (set) 

Operators 
Goal-test (maybe many goals) 
Path-cost-function 

Knowledge representation 
 Mutilated chess board 



Search I 
Example problems demonstrated in terms of the problem definition. 

I.  8-puzzle (general class is NP-complete) 

How to model operators?  (moving tiles vs. blank)    
Path cost = 1 
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II. 8-queens (general class has efficient solution)  path cost = 0 

Incremental formulation:  
(constructive search) 
States: any arrangement of 0 to 8 
queens on board 
Ops: add a queen to any square 
# sequences = 648 

Improved incremental formulation: 
States: any arrangement of 0 to 8 queens 
on board with none attacked 
Ops: place a queen in the left-most empty 
column s.t. it is not attacked by any other 
queen 
# sequences = 2057 

Complete State formulation: 
(iterative improvement) 
States: arrangement of 8 queens, 1 
in each column 
Ops: move any attacked queen to 
another square in the same column 

Almost a solution to the 8-queen problem: 
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III.  Rubik’ Cube ~ 1019 states 

IV.   Crypt arithmetic 
   FORTY  29786 
 +       TEN        +      850   
 +       TEN        +      850   
  SIXTY            31486 

V.  Real world problems 
  1. Routing (robots, vehicles, salesman) 
  2. Scheduling & sequencing 
  3. Layout (VLSI, Advertisement, Mobile phone link stations) 
  4. Winner determination in combinatorial auctions 
… 



Data type node  

•     State 
•     Parent-node 
•     Operator 
•     Depth 
•     Path-cost 

Fringe = frontier = open (as queue) 







Goodness of a search strategy   

•  Completeness 
•  Time complexity 
•  Space complexity 
•  Optimality of the solution found            

(path cost = domain cost) 
•  Total cost = domain cost + search cost 

search cost 



Uninformed vs. informed search 

Can only distinguish goal states from non-goal state 



Breadth-First Search 
function BREADTH-FIRST-SEARCH (problem) returns a solution or failure 
   return GENERAL-SEARCH (problem, ENQUEUE-AT-END) 

Breadth-first search tree after 0,1,2 and 3 node expansions 



Breadth-First Search … 
Max 1 + b + b2 + … + bd nodes (d is the depth of the shallowest goal) 
- Complete 
- Exponential time & memory O(bd) 
- Finds optimum if path-cost is a non-decreasing function of the 
depth of the node. 



Uniform-Cost Search 
Insert nodes onto open list in ascending order of g(h). 

Finds optimum if the cost of a path never decreases as we go along the path.  
g(SUCCESSORS(n)) ≥ g(n) 

<= Operator costs ≥ 0 
If this does not hold, nothing but an exhaustive search will find the optimal solution. 

G inserted into open list 
although it is a goal state. 
Otherwise cheapest path to a 
goal may not be found. 



Depth-First Search 
function DEPTH-FIRST-SEARCH (problem) returns a solution or failure 
    GENERAL-SEARCH (problem, ENQUEUE-AT-FRONT) 

• Time O(bm) (m is the max 
 depth in the space) 

• Space O(bm)  ! 
• Not complete (m may be ∞) 

• E.g. grid search in one 
direction 

• Not optimal 

Alternatively can 
use a recursive 
implementation. 



Depth-Limited Search 
-   Depth limit in the algorithm, or  
-   Operators that incorporate a depth limit 

L = depth limit 
Complete if L ≥ d  (d is the depth of the shallowest goal) 
Not optimal  (even if one continues the search after the 
first solution has been found, because an optimal solution may 
not be within the depth limit L) 
O(bL) time 
O(bL) space 

Diameter of a search space? 



Iterative Deepening Search 

Breadth first search : 
1 + b + b2 + … + bd-1 + bd 

E.g. b=10, d=5:  1+10+100+1,000+10,000+100,000 = 111,111 

Iterative deepening search : 
(d+1)*1 + (d)*b + (d-1)*b2 + … + 2bd-1 + 1bd 

E.g. 6+50+400+3000+20,000+100,000 = 123,456 
Complete, Optimal, O(bd) time, O(bd) space 
Preferred when search space is large & depth of (optimal) solution is unknown 



Iterative Deepening Search… 



Iterative Deepening Search… 

If branching factor is large,  
most of the work is done at  
the deepest level of search, 
so iterative deepening does  
not cost much relatively speaking 



Bi-Directional Search 

Time O(bd/2) 



Bi-Directional Search … 
Need to have operators that calculate predecessors. 
What if there are multiple goals? 
•  If there is an explicit list of goal states, then we can apply a  predecessor function 
to the state set just as we apply the successors function in multiple-state forward 
search. 
•  If there is only a description of the goal set, it MAY be possible to figure out the 
possible descriptions of “sets of states that would generate the goal set”. 

Efficient way to check when searches meet: hash table 
-  1-2 step issue if only one side stored in the table 
Decide what kind of search (e.g. breadth-first) to use in each half. 

Optimal, complete, O(bd/2) time. O(bd/2) space (even with iterative deepening) 
because the nodes of at least one of the searches have to be stored to check matches 



Time, Space, Optimal, Complete? 

b = branching factor 
d = depth of shallowest goal state 
m = depth of the search space 
l = depth limit of the algorithm 



More effective 
& more 
computational 
overhead 

With loops, the search tree may even become infinite 

Avoiding repeated states 


